Approximate Newton–Krylov (ANK)

« Back

The approximate Newton–Krylov (ANK) solver in ADflow was developed between 2017 and 2018. The underlying theory of the solver was published in the Journal of Computational Physics by (Yildirim et al., 2019). Below, is a list of papers that used the ANK solver to obtain the presented results. The robustness of this solver was crucial for many of these publications.

  1. A Jacobian-free approximate Newton–Krylov startup strategy for RANS simulations

    A. Yildirim, G. K. W. Kenway, C. A. Mader, and J. R. R. A. Martins

    Journal of Computational Physics, 397108741, 2019

    doi:10.1016/j.jcp.2019.06.018

    Details

Publications that used the ANK solver in ADflow

  1. Boundary Layer Ingestion Benefit for the STARC-ABL Concept

    A. Yildirim, J. S. Gray, C. A. Mader, and J. R. R. A. Martins

    Journal of Aircraft, 2022

    doi:10.2514/1.C036103

    Details
  2. Details
  3. Coupled Aeropropulsive Design Optimization of a Podded Electric Propulsor

    A. Yildirim, J. S. Gray, C. A. Mader, and J. R. R. A. Martins

    AIAA Aviation Forum, 2021

    doi:10.2514/6.2021-3032

    Details
  4. Accelerating parallel CFD codes on modern vector processors using blockettes

    A. Yildirim, C. A. Mader, and J. R. R. A. Martins

    Proceedings of the Platform for Advanced Scientific Computing Conference, (11), 2021

    doi:10.1145/3468267.3470615

    Details
  5. Geometrically Nonlinear High-fidelity Aerostructural Optimization for Highly Flexible Wings

    A. C. Gray, and J. R. R. A. Martins

    Proceedings of the AIAA SciTech Forum, 2021

    doi:10.2514/6.2021-0283

    Details
  6. Details
  7. Performance Analysis of Optimized STARC-ABL Designs Across the Entire Mission Profile

    A. Yildirim, J. S. Gray, C. A. Mader, and J. R. R. A. Martins

    Proceedings of the AIAA SciTech Forum, 2021

    doi:10.2514/6.2021-0891

    Details
  8. Details
  9. Multipoint Aerodynamic Shape Optimization for Subsonic and Supersonic Regimes

    M. Mangano, and J. R. R. A. Martins

    Journal of Aircraft, 58(3):650–662, 2021

    doi:10.2514/1.C036216

    Details
  10. RANS-Based Aerodynamic Shape Optimization of a Wing Considering Propeller-Wing Interaction

    S. Chauhan, and J. R. R. A. Martins

    Journal of Aircraft, 58(3):497–513, 2021

    doi:10.2514/1.C035991

    Details
  11. Aerostructural Wing Optimization for a Hydrogen Fuel Cell Aircraft

    B. J. Brelje, and J. R. R. A. Martins

    Proceedings of the AIAA SciTech Forum, 2021

    doi:10.2514/6.2021-1132

    Details
  12. Rapid Airfoil Design Optimization via Neural Networks-based Parameterization and Surrogate Modeling

    X. Du, P. He, and J. R. R. A. Martins

    Aerospace Science and Technology, 113106701, 2021

    doi:10.1016/j.ast.2021.106701

    Details
  13. Coupled Newton–Krylov Time-Spectral Solver for Flutter and Limit Cycle Oscillation Prediction

    S. He, E. Jonsson, C. A. Mader, and J. R. R. A. Martins

    AIAA Journal, 59(6):2214–2232, 2021

    doi:10.2514/1.J059224

    Details
  14. Details
  15. Flexible Formulation of Spatial Integration Constraints in Aerodynamic Shape Optimization

    B. J. Brelje, J. Anibal, A. Yildirim, C. A. Mader, and J. R. R. A. Martins

    AIAA Journal, 58(6):2571–2580, 2020

    doi:10.2514/1.J058366

    Details
  16. Aerostructural Trade-offs for Tow-steered Composite Wings

    T. R. Brooks, J. R. R. A. Martins, and G. J. Kennedy

    Journal of Aircraft, 57(5):787–799, 2020

    doi:10.2514/1.C035699

    Details
  17. Scalable gradient-enhanced artificial neural networks for airfoil shape design in the subsonic and transonic regimes

    M. A. Bouhlel, S. He, and J. R. R. A. Martins

    Structural and Multidisciplinary Optimization, 611363–1376, 2020

    doi:10.1007/s00158-020-02488-5

    Details
  18. Aerostructural Design Exploration of a Wing in Transonic Flow

    N. P. Bons, and J. R. R. A. Martins

    Aerospace, 7(8):118, 2020

    doi:10.3390/aerospace7080118

    Details
  19. High-fidelity Aerostructural Optimization Studies of the Aerion AS2 Supersonic Business Jet

    N. P. Bons, J. R. R. A. Martins, C. A. Mader, M. McMullen, and M. Suen

    Proceedings of the AIAA Aviation Forum, 2020

    doi:10.2514/6.2020-3182

    Details
  20. Aerothermal Optimization of X-57 High-Lift Motor Nacelle

    J. L. Anibal, C. A. Mader, and J. R. R. A. Martins

    AIAA SciTech Forum, 2020

    doi:10.2514/6.2020-2115

    Details
  21. Adjoint-Based Aerodynamic Shape Optimization Including Transition to Turbulence Effects

    G. L. O. Halila, J. R. R. A. Martins, and K. J. Fidkowski

    Aerospace Science and Technology, (107):1–15, 2020

    doi:10.1016/j.ast.2020.106243

    Details
  22. Coupled Aeropropulsive Design Optimization of a Three-Dimensional BLI Propulsor Considering Inlet Distortion

    J. S. Gray, C. A. Mader, G. K. W. Kenway, and J. R. R. A. Martins

    Journal of Aircraft, 57(6):1014–1025, 2020

    doi:10.2514/1.C035845

    Details
  23. Large-Scale Path-Dependent Optimization of Supersonic Aircraft

    J. Jasa, B. Brelje, J. Gray, C. A. Mader, and J. R. R. A. Martins

    Aerospace, 7(152), 2020

    doi:10.3390/aerospace7100152

    Details
  24. Hydrodynamic Optimization of a T-foil

    Y. Liao, A. Yildirim, Y. L. Young, and J. R. R. A. Martins

    SNAME Maritime Convention, 2020

    Details
  25. Aerostructural Wing Design Exploration with Multidisciplinary Design Optimization

    N. P. Bons, and J. R. R. A. Martins

    Proceedings of the AIAA SciTech Forum, 2020

    doi:10.2514/6.2020-0544

    Details
  26. Details
  27. Natural Laminar-Flow Airfoil Optimization Design Using a Discrete Adjoint Approach

    Y. Shi, C. A. Mader, S. He, G. L. O. Halila, and J. R. R. A. Martins

    AIAA Journal, 58(11):4702–4722, 2020

    doi:10.2514/1.J058944

    Details
  28. ADflow: An open-source computational fluid dynamics solver for aerodynamic and multidisciplinary optimization

    C. A. Mader, G. K. W. Kenway, A. Yildirim, and J. R. R. A. Martins

    Journal of Aerospace Information Systems, 17(9):508–527, 2020

    doi:10.2514/1.I010796

    Details
  29. Efficient Aerodynamic Shape Optimization with Deep-learning-based Filtering

    J. Li, M. Zhang, J. R. R. A. Martins, and C. Shu

    AIAA Journal, 58(10):4243–4259, 2020

    doi:10.2514/1.J059254

    Details
  30. Hydrostructural Optimization of Generic Composite Hydrofoils

    Y. Liao, S. He, J. R. R. A. Martins, and Y. L. Young

    AIAA SciTech Forum, 2020

    doi:10.2514/6.2020-0164

    Details
  31. Robust aerodynamic shape optimization—from a circle to an airfoil

    X. He, J. Li, C. A. Mader, A. Yildirim, and J. R. R. A. Martins

    Aerospace Science and Technology, 8748–61, 2019

    doi:10.1016/j.ast.2019.01.051

    Details
  32. Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint

    S. He, E. Jonsson, C. A. Mader, and J. R. R. A. Martins

    2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2019

    doi:10.2514/6.2019-0697

    Details
  33. A Coupled Newton–Krylov Time-Spectral Solver for Wing Flutter and LCO Prediction

    S. He, E. Jonsson, C. A. Mader, and J. R. R. A. Martins

    AIAA Aviation Forum, 2019

    doi:10.2514/6.2019-3549

    Details
  34. Sweep and anisotropy effects on the viscous hydroelastic response of composite hydrofoils

    Y. Liao, J. R. R. A. Martins, and Y. L. Young

    Composite Structures, 230111471, 2019

    doi:10.1016/j.compstruct.2019.111471

    Details
  35. Effective Adjoint Approaches for Computational Fluid Dynamics

    G. K. W. Kenway, C. A. Mader, P. He, and J. R. R. A. Martins

    Progress in Aerospace Sciences, 110100542, 2019

    doi:10.1016/j.paerosci.2019.05.002

    Details
  36. Data-driven Constraint Approach to Ensure Low-speed Performance in Transonic Aerodynamic Shape Optimization

    J. Li, S. He, and J. R. R. A. Martins

    Aerospace Science and Technology, 92536–550, 2019

    doi:10.1016/j.ast.2019.06.008

    Details
  37. Multipoint Aerodynamic Shape Optimization for Subsonic and Supersonic Regimes

    M. Mangano, and J. R. R. A. Martins

    57th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2019, 2019

    doi:10.2514/6.2019-0696

    Details
  38. RANS-based Aerodynamic Shape Optimization of a Strut-braced Wing with Overset Meshes

    N. R. Secco, and J. R. R. A. Martins

    Journal of Aircraft, 56(1):217–227, 2019

    doi:10.2514/1.C034934

    Details
  39. Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine

    M. H. A. Madsen, F. Zahle, N. N. Sørensen, and J. R. R. A. Martins

    Wind Energy Science, 4163–192, 2019

    doi:10.5194/wes-4-163-2019

    Details
  40. Viscous Fluid Structure Interaction Response of Composite Hydrofoils

    Y. Liao, N. Garg, J. R. R. A. Martins, and Y. L. Young

    Composite Structures, 212571–585, 2019

    doi:10.1016/j.compstruct.2019.01.043

    Details
  41. Flexible Formulation of Spatial Integration Constraints in Aerodynamic Shape Optimization

    B. J. Brelje, J. L. Anibal, A. Yildirim, C. A. Mader, and J. R. R. A. Martins

    57th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2019

    doi:10.2514/6.2019-2355

    Details
  42. Details
  43. A Jacobian-free approximate Newton–Krylov startup strategy for RANS simulations

    A. Yildirim, G. K. W. Kenway, C. A. Mader, and J. R. R. A. Martins

    Journal of Computational Physics, 397108741, 2019

    doi:10.1016/j.jcp.2019.06.018

    Details
  44. Aeropropulsive Design Optimization of a Boundary Layer Ingestion System

    A. Yildirim, J. S. Gray, C. A. Mader, and J. R. R. A. Martins

    AIAA Aviation Forum, 2019

    doi:10.2514/6.2019-3455

    Details
  45. RANS-based Aerodynamic Shape Optimization of a Strut-braced Wing with Overset Meshes

    N. R. Secco, and J. R. R. A. Martins

    2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018

    doi:10.2514/6.2018-0413

    Details
  46. Aero-propulsive Design Optimization of a Turboelectric Boundary Layer Ingestion Propulsion System

    J. S. Gray, G. K. W. Kenway, C. A. Mader, and J. R. R. A. Martins

    2018 AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2018

    doi:10.2514/6.2018-3976

    Details
  47. A Coupled Newton–Krylov Time Spectral Solver for Flutter Prediction

    S. He, E. Jonsson, C. A. Mader, and J. R. R. A. Martins

    2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018

    doi:10.2514/6.2018-2149

    Details
  48. High-Fidelity Aerodynamic Shape Optimization of a Full Configuration Regional Jet

    N. P. Bons, C. A. Mader, J. R. R. A. Martins, A. P. C. Cuco, and F. I. K. Odaguil

    2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018

    doi:10.2514/6.2018-0106

    Details
  49. Trajectory Optimization of a Supersonic Air Vehicle with Thermal Fuel Management System

    J. P. Jasa, C. A. Mader, and J. R. R. A. Martins

    AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2018

    doi:10.2514/6.2018-3884

    Details

Tags: