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In aircraft design, a simultaneous optimization of the airline allocation, mission profile, and the
airframe-propulsion design can be advantageous because it can capture how design changes might
affect the aircraft utilization at the airline level. As a first step towards this goal, previous research
solved the allocation-mission optimization problem by taking a modular adjoint approach, but with
only a 3-route network to simplify the problem. This paper extends the previous work to solve a
128-route allocation-mission optimization problem using a parallel computational framework. The
computation of the constraint gradients can be parallelized by extending the framework to support
linear algebra with multiple right-hand sides. The 128-route optimization problem contains roughly
6,000 design variables and 23,000 constraints, and it converges about 3 orders of magnitude in opti-
mality and feasibility in approximately 8 hours on 128 processors.

I. Introduction

The growing interest in next-generation aircraft concepts motivates the development of computational tools with
tighter integration between disciplines. For instance, the truss-braced wing (TBW) concept uses struts to enable
thinner wings with higher aspect ratios, but coupled aerostructural analysis and optimization are required to accurately
quantify the weight and drag savings. Operational changes are being explored for future aircraft as well, such as
continuous descent approach and morphing wings, and these necessitate analysis of the full mission profile. Concepts
such as the TBW are also being designed for low cruise Mach numbers, impacting how the aircraft may be utilized
within an airline’s network.

Because of the coupling between the disciplines, integrating all of these changes in a single concept would require
simultaneously considering the airline allocation, mission analysis, and the design of the airframe and propulsion
system. Typically, design optimization is performed at a single or a small number of representative conditions. For
better accuracy, especially when considering morphing wings, a potential design candidate should be analyzed across
the full mission profile. Since design decisions and the performance on the mission profiles affect which routes may
be optimal to fly, it would be desirable to simultaneously consider the aircraft allocation problem as well, so that the
metric is the airline-level profit or industry-level fuel burn.

This simultaneous problem, which we call allocation-mission-design optimization, is ambitious and large in scope.
Compared to design-only optimization, this problem requires tens of thousands more evaluations of the aircraft per-
formance model because of the number of mission points, the number of iterations required to converge the coupled
mission analysis, and the number of routes in the airline network. A previous study outlined a method for making this
problem tractable and focused on allocation-mission optimization as a starting point [1]. The proposed method would
use aerostructural and propulsion surrogate models that are retrained every optimization iteration, and these surrogate
models would be used for the mission analysis at much lower cost.

In that paper, an allocation-mission optimization algorithm was presented as an initial step towards the goal of
allocation-mission-design optimization. That is; for a fixed airframe and engine design, the next-generation aircraft
were allocated to hypothetical routes in competition with existing aircraft models, while simultaneously optimizing the
mission profile on each route. The mission profiles were analyzed using a surrogate model for the aerodynamic per-
formance, but the training points were pre-computed and did not change throughout the optimization. This simplified
problem presented several challenges that are also present in the allocation-mission-design optimization problem.

The first challenge is the large number of design variables resulting from the parametrizations of the altitude
profiles requiring O(10) design variables per route. This was addressed by using gradient-based optimization in
conjunction with the adjoint method to compute derivatives, enabling the optimization problem to be solved at a cost
of roughly O(10?) evaluations of the model.
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The second challenge is the code complexity due to combining several disciplines together and requiring the
efficient computation of derivatives involving multiple coupled disciplines. The complexity is mitigated by integrating
the airline models, mission analysis equations, and surrogate models within a computational framework that solves the
coupled multidisciplinary system and centrally computes derivatives using the adjoint method. This framework, which
uses the modular analysis and unified derivatives (MAUD) architecture [2], greatly simplified the code implementation
and solution of the optimization problem. MAUD is now implemented in OpenMDAO [3], and it has been applied to
the solution of allocation [1], mission [4], satellite [5], and wind turbine [6] design optimization problems.

The third challenge is the combinatorial nature of the allocation problem since a finite number of aircraft are
allocated to discrete routes. This was addressed by formulating a continuous problem and applying the branch-and-
bound (B&B) method to ensure integer solutions. What was unique about this particular B&B implementation is
that the mixed-integer nonlinear allocation-mission optimization was initialized using the solution of the allocation-
only problem as a starting point. Since the allocation-only problem is linear, its solution is the global optimum of
the linear problem, so the B&B algorithm solves the mixed-integer allocation-mission optimization problem very
efficiently, taking advantage of warm starts to solve each continuous optimization in much less time than that of a full
optimization.

While the solutions to these 3 challenges were successful, the major limitation in the results from Hwang et al. [1]
is that the problem considered a network with only 3 routes because the algorithm scaled poorly for larger networks.
Realistic networks representative of airlines contain O(100) routes.

The objective of this paper is to extend the methods presented in Hwang et al. [1] to solve allocation-mission op-
timization problems on larger networks by exploiting parallel computing. The mixed-integer nature of the allocation-
mission optimization problem is kept out of the scope of this work for simplicity. The justification for this is that the
previous results showed that the cost of each node evaluation in the B&B algorithm is much less than a full continuous
optimization thanks to warm starts. Therefore, the rationale is that embedding the parallel allocation-mission opti-
mization with a large number of routes in the B&B algorithm would not increase the computation time by multiple
orders of magnitude.

The structure of the paper is as follows. Sec. II begins with an overview of the general approach: the allocation-
mission optimization problem, the adjoint-based optimization strategy, and the MAUD framework. In Sec. III, we
present the equations for the allocation and mission models and in Sec. IV, we describe the parallel computational
framework implementing the MAUD architecture. Finally, Sec. V presents the results for a 128-route allocation-
mission optimization problem.

II. Overview

The allocation-mission optimization problem we wish to solve in this paper is presented below (NLP-a-m). There
are n,; routes and n,. types of aircraft, with n,,,. of them being ‘next-generation’ types for which we perform mission
analyses. For the remaining types of aircraft, we use pre-computed fuel-burn and block-time values since these will
be fixed in allocation-mission-design optimization. The altitude profile is parametrized using a B-spline curve with
N¢p B-spline control points and 7, points in the discretized mission profile. The objective function being maximized
is profit and the design variables are the number of passengers per flight pax flt; ; and the number of flights per day
fitday, ;, for route ¢ and aircraft type j.

In (NLP-a-m), the first two inequality constraints ensure the total number of passengers being flown on a route in
a given day is no more than the demand and that the total usage for each aircraft type is allowable given the number
of that type of aircraft that the airline owns. The altitude control points at the start and end of the mission profile are
fixed to zero, Kreisselmeier—Steinhauser (KS) functionals [7] are used to aggregate the minimum and maximum thrust
constraints across the mission profile to single values, and the slope of the altitude profile (climb angle) is limited to
35° to avoid unphysical altitude profiles.
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maximize profit
with respect to  pax Alt; ; € [0, ac_capacity,] , 1<i<ng, 1 <5< ng
ﬂtdeYi,j €10,00) , 1<i<ng, 1<j<nge
altitude; ; 1, € [0, max_altitude] , 1<i<ng, 1< < nyge
1<k <ng
subject to  total_pax,; < demand, , 1<i<ny
total,usagej < num_ac; , 1 <7 < nge (NLP-a-m)
altitude; ;1 = 0, 1<i<ng, 1 <7< Npae
altitude; ;. ., =0, 1<i<ng, 1 <7< Npae
idle_throttle < throttle; ;(KS) , 1<i<ng, 1 <7< Npae
throttle; ; < max_throttle (KS) , 1<i<ny, 1 <7< Npae
min_slope < slop(=,l-7j’,C <maxslope, 1<i<n, 1<7< Npae
1 S k S Npt

As previously mentioned, the first challenge to address is the large number of design variables in the optimization
problem. Typically, we use 20-50 control points and 100-250 discretized points for each mission profile, so the total
number of design variables in even an allocation-problem with only (O(10) route is in the hundreds. Therefore, our
approach is to use gradient-based optimization with the derivatives computed using the adjoint method.

However, the mission analysis for each route involves the solution of a coupled system of equations incorporating
multiple disciplines and components. The need to compute derivatives in addition to that makes the development,
integration, and management of the code even more difficult and error-prone.

To manage the resulting code complexity, we use a computational framework that enables us to develop the multi-
disciplinary model component by component. If each component follows a specified interface, the framework provides
many features such as centrally solving the nonlinear systems of equations that arise. This framework, which imple-
ments the modular analysis and unified derivatives (MAUD) architecture, is different from other frameworks because
it uses a unique mathematical formulation.

Once the user defines a set of components that map inputs to outputs, the framework concatenates the full list of
variables as a single vector (in conceptual terms). The framework implicitly formulates all the components as a single
nonlinear system of equations,

T

Ru)=0 , u=[z1,.. ,Tns Y1, Ym> f1,- - [p] (1)
where x1, ..., x, are the input variables (design variables and parameters), 41, . . . , Y., are the intermediate variables
(state variables and coupling variables), and fq,..., f, are the output variables (objective, constraints, and other

quantities of interest). Therefore, evaluating the multidisciplinary model translates to simply solving this nonlinear

system. Martins and Hwang [8] showed that the various methods for computing derivatives are unified by the equation,
ORdu _ . _ OR™ du”
oudr =~ Ou dr ’

so that the task of computing derivatives in the MAUD formulation reduces to solving a common, unified linear system,

whether the chain rule, the adjoint method, or any other method is desired.

In Sec. IV, we present some of the details of a parallel implementation of the MAUD architecture which yields a
framework that enables us to efficiently solve the allocation-mission optimization problem in parallel with a high level
of modularity and automation.

2

III. Allocation and mission models

In this section, we present the equations in the mission analysis and the models in the airline allocation problem.

A. Mission analysis

The mission analysis formulation used here follows the approach of Kao et al. [4] For a given route, the goal of the
mission analysis is to compute the performance given the altitude and Mach number profiles. In this paper, we do not
allow the Mach number profile to vary because of limitations in the aerodynamic surrogate model; only the altitude
profile is optimized, using a B-spline parametrization.

In reality, some altitude profiles cannot be flown, but when a model fails to solve, this can cause problems for
the optimizer. Thus, within each optimization iteration, our approach is to compute the required thrust at each point
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in the mission regardless of whether that much thrust is available with the given engines. The optimizer is given the
responsibility of ensuring that a physically realizable mission profile will be found by giving it constraints that the
thrust at each mission point is between idle and maximum.

The mission analysis discretizes the profile and solves the equilibrium equations, interrogating the surrogate model
for aircraft performance as required. The full list of variables modeled in the mission analysis and their dependency
graph are shown in Fig. 1. The blue variables are the input variables, evident by the fact that they do not depend on
any other variable. The B-spline variables are computed as a function of the B-spline control points, indicated by
the tildes, and the atmospheric properties are computed in sequence in terms of previous variables. The variables in
purple capture the coupling in the mission analysis, and the outputs are vectors or scalars computed in terms of earlier
variables.
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Figure 1: The variables in the mission analysis and their dependencies (shown in dark grey).

The variables in the coupled analysis group capture the following sequence of relationships. First, the lift coeffi-
cient can be explicitly computed by rearranging the vertical equilibrium equation to get

W cosy
CL=———F=——
o 1pv28

Next, the angle of attack, «, is implicitly computed by solving

Crsin a.

CL(a7naMah) - CL = 07
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and similarly, the tail rotation angle, 7, is implicitly computed by solving

Cm(a,n, M,h) =0. (5)
The drag coefficient can be explicitly evaluated from
Cp = Cp(a, 1, M, h), (0)
from which the thrust coefficient can be computed by rearranging the horizontal equilibrium equation to get

c W sin
Cr=—2 4 o) 7
cosa  zpviScosa

Finally, the fuel weight ODE is given by

{SFC}Cr3pv2S
Wy = ,
v Cos 7y

®)

which is integrated to get the fuel weight at each point in the mission. Since the fuel weight contributes to the total
aircraft weight which affects the lift coefficient, this completes the feedback loop.

The training points for the aerodynamic surrogate model are generated using TriPan, a 3-D panel code. For this
paper, simplified engine models are used; the thrust-specified fuel consumption is modeled to decrease linearly with

altitude and maximum thrust is modeled as
P |Tst
Tm = 1im -\ 9
,SL PN T 9

where S L stands for sea level.

B. Allocation model

The allocation problem formulation we use has two sets of design variables; the number of flights per day and the
number of passengers per flight, for a given type of aircraft on a given route [9]. To simplify the problem, we ignore
all routing and scheduling considerations and we make the assumption that all flights in a day for a given route and
aircraft type have the same number of passengers.

Profit is modeled as

profit =» > " [price_pax, ; - paxflt, ; - fit_day, ] (10)
i
Nrt Nac
- Z Z [(costAlt; ; + cost_fuel - fuel flt; ;) - ﬂt,dayi’j} , (11)
(A

where price_pax; ; is the ticket price per flight, cost_flt; ; is the total cost of operating a flight minus fuel, cost_fuel is
the cost per unit fuel, and fuel flt is the total fuel burn on a flight.

The allocation problem contributes two inequality constraints to the allocation-mission optimization. The first
ensures that the total number of people that fly on a given route on a given day is less than the total demand for that
route, and it is given by

Nac
total_pax; = Z [pax,ﬂtm- ~ﬂt,dati,j] < demand; , 1<i<n.. (12)
J
The second inequality constraint takes into consideration how many aircraft of a given type are actually owned by the
airline, and it is given by

total_usage ; = Z [fit_day, ; - (time_flt; j(1 + maint;) + turn_flt)| < 12hr-num_ac; , 1 < j < nge, (13)

i

where time_flt; ; is the block time for a flight, maint; is the maintenance time required as a multiple of block time,
turn_flt is the turnaround time between flights, and num_ac; is the number of aircraft available for a given type.
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IV. Parallel computational framework

The parallel computational framework implements the MAUD architecture with the additional requirements of
parallel data handling and parallel solvers, leveraging the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [10]. One of the motivations is to exploit the opportunity for more modularity and automation in the parallel
setting by centrally handling the logistics of assigning a route to each processor. The primary objective is to keep
memory and computational costs manageable so that the allocation-mission optimization algorithm scales efficiently
to large network sizes.

A key feature of the MAUD architecture is that it hierarchically decomposes the problem for managing the parallel
data passing and for its nonlinear and linear solvers. It was discussed earlier that the flat list of variables in Fig. 1 are
grouped into inputs, B-splines, atmospheric properties, coupled analysis, and ouputs. As illustrated in Fig. 2, these are
in turn grouped into a single mission system, and the n mission systems are grouped into a ‘mission analyses’ system.
The ‘mission analyses’ system is grouped with the allocation inputs and allocation outputs systems under the top-level
system.

Problem

Allocation inputs Mission analyses Allocation outputs
pax_fit fit_day Mission 1 N Mission 7 i Mission n profit  demand a/c con.
Inputs Bsplines Atmos. Coupled Outputs

Figure 2: Hierarchy tree showing how the allocation-mission model is constructed. The boxes in grey are the variables,
the blue boxes group systems together in series, and the red box groups its systems in parallel. The coupled analysis
box is shown in green because its variables are coupled, so it uses Newton’s method and GMRES.

The parallelization occurs in the mission analyses system. During initialization, each serial group (each blue box)
passes its MPI communicator (group of processors) to each of its children, but the parallel group (the red box) splits its
MPI communicator and assigns each of the n mission systems a single processor in this case. In terms of solvers, the
mission analyses system applies block nonlinear Jacobi and block linear Jacobi, while the serial groups apply block
nonlinear Gauss—Seidel and block linear Gauss—Seidel on its child systems. The exception among the serial groups
is the coupled analysis system; since its children are coupled, as shown in Fig. 1, its nonlinear solver is the Newton
iteration and its linear solver is the generalized minimal residual (GMRES) method.

There are two key developments in the design of the parallel framework that make it scale well in computation time
and memory usage. The first enables the parallel computation of independent constraints. Let us consider the problem
of finding the gradient of the min or max thrust KS constraint with respect to the altitude control points in a two-
mission problem. To solve the optimization problem (NLP-a-m), we must compute these gradients for both missions,
but we can take advantage of the fact that each mission’s KS constraints are only affected by its altitude control points
and not those of other missions. As shown in Fig. 3, a naive approach would solve one mission’s gradients at a time,
but the parallel framework allows for multiple gradients to be solved simultaneously by supporting linear algebra with
multiple right-hand sides. The second key aspect of the parallel framework’s design is that it analyzes the dependency
graph as an initialization step and determines which variables are involved in the computation of each gradient, given
the inputs of interest. The vectors are then allocated to contain only the parts that are relevant in the computation to
minimize memory usage, but the remaining parts of the vector that are actually allocated are concatenated and stored
in a contiguous way in memory so that the vector operations and parallel data transfers are efficient. Figure 3 illustrates
this as well—the grey portions of the solution and right-hand side vectors are not allocated.

V. Results

In this section, we solve a 128-route allocation-mission optimization problem to demonstrate the efficiency of
the parallel framework and the parallel allocation-mission optimization algorithm. The routes vary in range from
roughly 200 nmi to 7600 nmi, and we have chosen a diverse fleet. The existing aircraft are the Embraer 170, Boeing
737-800, Boeing 777-200ER, and the Boeing 747-400, and the next-generation aircraft is an advanced conventional
aircraft based on the common research model (CRM) [11]. The cost and performance data for the existing aircraft are
obtained from the FLEET simulation tool [12].
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Gradients for outputs of both missions

Figure 3: The computation of the gradients of the min and max thrust KS constraints with respect to the altitude
control points in a two-route allocation-mission optimization problem. At the top, the naive approach solves for the
two gradient sequentially, meaning one processor idles while the other solves for the gradient. The bottom system
shows how the parallel framework is implemented as it is able to solve linear systems with multiple right-hand sides
simultaneously.
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The parallel allocation-mission optimization was initialized by first optimizing each mission profile individually,
and solving the linear allocation-only optimization problem to obtain good starting points for the allocation design
variables. Figure 4 shows the optimization solutions from the allocation-only optimization and the parallel allocation-
mission optimization. An interesting result is that the CRM, which is similar in size to the Boeing 777, a long-range
jet, is actually used for many short-range missions, likely because its overall efficiency outweighs the fact that it is
designed for longer-range routes.
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Figure 4: Optimization results from the 128-route problem.

The 128-route optimization problem is presented in Tab. 1 and Fig. 5 shows the convergence history. It converged
in about 8 hours. It is solved using SNOPT [13] via a modified version of the Python interface provided in the pyOpt
optimization library [14]. Because of the accuracy that analytic derivative computation provides, the optimization is
able to converge several orders of magnitude in both optimality and feasibility. The merit function does not show a
significant increase because the initial values for passengers per flight and flights per day design variables are obtained
from the solution of the allocation-only optimization problem. Since the parallel allocation-mission optimization
solves the relaxed problem, it is not surprising that the final profit of $29.83 million is much higher than the profit after
the mixed-integer linear optimization of $23.61 million.

Figure 6 plots run times for the evaluation of the allocation-mission model and the computation of all the adjoints.
For each data point in Fig. 6, the results are obtained by running the computation on the same number of processors
as routes. The model evaluation time shows very good scaling with the problem size up to 128 routes. The derivative
computation time shows weaker scaling; however, the plot is of the total solve time for all the adjoints. Part of the
increasing trend can be attributed to the fact that as the number of routes increases, the number of constraints increases,
in addition to the sizes of the adjoint linear systems increasing.
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Variable Quantity
maximize profit

with respectto  passengers per flight for each aircraft type and route 5 x 128

flights per day for each aircraft type and route 5 x 128
altitude control points from each route 4575
Total number of design variables 5855
subject to  demand constraint for each route 128
total flight time constraint for each aircraft 5
idle thrust KS constraint for each route 128
max thrust KS constraint for each route 128
linear climb angle bounds for each mission 22875
Total number of constraints 23264

Table 1: The 128-route allocation-mission optimization problem.

Merit function
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Figure 5: Optimization convergence history.
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Figure 6: Scaling of model evaluation and derivative computation time with number of routes. The results are run
using the same number of processors as routes.

9of 11

American Institute of Aeronautics and Astronautics



VI. Conclusion

In this paper, we demonstrated parallel allocation-mission optimization on a representative 128-route network.
Following previous work, we implemented the aerodynamic surrogate model, mission analysis models, and airline
allocation models within a computational framework that automates derivative computation using the adjoint method.
We extended the parallel framework to support linear algebra with multiple right-hand sides to enable parallel con-
straint gradient computation, which is a key, enabling component of the algorithm. The vectors are sparse at the
discipline- or component-level for better scaling of memory usage. We demonstrated that the algorithm scales well up
to at least 128 processors by solving a 128-route allocation-mission optimization problem.

There are several topics for future work as a continuation of this research effort. The first is to add design into the
problem to perform allocation-mission-design optimization. With the parallel framework at least partially validated,
it is ready to add a CFD solver as a component to dynamically re-train the surrogate model during optimization to
allow aircraft design variables to be included. Another topic for future work is to improve the propulsion model,
potentially using a surrogate as well to allow engine design variables to be included in the future. The final major
avenue for future work is to re-introduce the mixed-integer aspect of the problem once again and incorporate the
parallel allocation-mission-design optimization within the B&B algorithm.
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