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A surrogate modeling framework is implemented to analyze the performance of a Li-ion cell with respect to four input variables:
cycling rate, particle size, diffusivity, and electrical conductivity. Five different cathode materials (LiMn,O4, LiFePO4, LiCoO2,
LiVeO13, and LiTiS,) are modeled, and ranges for all material properties are selected based on reported data from the literature.
The relative impact of the variables is quantified using global sensitivity analysis, and critical diffusivity and conductivity values
are calculated. Two dimensionless parameters based on relative time and conductivity scales are defined and found to separate
operating conditions into distinct regimes in which the cell performance is limited by diffusion or conduction. Combining the two
dimensionless parameters into a single quantity and non-dimensionalizing the energy performance yields a Pareto-efficient set of
solutions that are described well by the generalized logistic function, which can be considered a reduced-order model of battery

performance with a global analytical solution.

© 2013 The Electrochemical Society. [DOI: 10.1149/2.069308jes] All rights reserved.

Manuscript submitted February 12, 2013; revised manuscript received April 18, 2013. Published May 18, 2013.

Lithium-ion batteries have attracted significant interest in recent
years due to their high achievable energy and power density, making
them ideal for a wide range of applications. Improving the design of
batteries to realize maximum energy and power performance requires
an understanding of how variables such as diffusivity, conductivity,
and particle size influence the cell behavior. The problem is compli-
cated by the wide ranges in the data reported for these variables due to
differences in measurement techniques and sample preparation proce-
dures. Additionally, there are a large number of materials suitable for
use in electrodes,’ and in most applications a range of C-rates must
be considered to account for different operating conditions. Since
parametric sweeps that sequentially vary one parameter at a time are
inefficient and unable to account for nonlinear interactions between
parameters, a systematic method for simultaneously studying multiple
variables is necessary for complicated multi-physics problems such as
the coupled electrochemical and transport processes in a lithium-ion
cell.

Through various experimental and numerical studies, cell per-
formance has been found to depend strongly on a large number of
operational, morphological, and material-dependent parameters. For
example, the effects of particle size>® and cycling rate* on capacity
have been quantified using various experimental techniques, while
simulations have been used to quantify the impact of particle size
and diffusivity on cell performance.®> Simulations have also been used
to show that a uniform size distribution can maximize capacity un-
der different cycling rates. Progress has also been made in study-
ing the evolution of material properties, such as that resulting from
the introduction conductive additives.” However, the measurements
and analysis in each of these studies were conducted for a single
cathode material and do not offer a comparison between candidate
materials that accounts for differences in material properties. Studies
comparing multiple materials often focus on specific properties such
as overcharge behavior® or thermal stability,® and not on the overall
cell performance. Howard and Spotnitz*® have conducted a compar-
ison of the cell-level performance of various cathode materials that
does not consider the effects of transport coefficients or particle size.
Dimensional analysis has been applied by Doyle and Newman'! to
derive analytical solutions to characterize battery performance based
on operating parameters. Three solutions based on different limit-
ing phenomena were obtained, but a single global analysis without
simplified physics is still missing.

Despite recent progress in understanding the relevant physical pro-
cesses in lithium-ion cells, there remains a need for a systematic com-
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parison of several candidate materials under a wide range of cycling
conditions, and in the presence of significant uncertainty in material
properties. In particular, a proper analysis of cell performance must
account for both the diffusivity and the conductivity of the materials.*
In order to address this issue, we define two objectives in this work:
to identify critical diffusivity and conductivity levels for achieving
high energy density with several different cathode materials, and to
establish the relationship between the cell performance and material
properties by applying dimensional analysis techniques that combine
multiple physical variables to obtain relevant dimensionless transport
parameters. Realizing these objectives requires a suitable mathemati-
cal framework capable of efficiently relating the outputs of a lithium-
ion cell model to its inputs. A good option is the surrogate modeling
framework, which builds approximate (surrogate) functions from pre-
computed model simulations to significantly reduce the computational
time required for additional function evaluations within the parame-
ter space.’? The surrogate modeling framework has been applied to
various engineering problems, including the study of intercalation-
induced stress on single lithium manganese oxide particles,'® and the
effect of microstructure on the transport and reaction properties of
particle clusters.**

In the present study, the output function of interest is the gravi-
metric energy density, also known as the mass-specific energy den-
sity or simply “specific energy”. The input variables are the cycling
rate, the size of solid particles in the cathode, and the diffusion co-
efficient and electrical conductivity of the solid cathode material.
Five different cathode materials are considered: lithium manganese
oxide (LiMn,0y), lithium iron phosphate (LiFePO,), lithium cobalt
oxide (LiC00,), lithium vanadium oxide (LiVO13), and lithium ti-
tanium sulfide (LiTiS,). Separate model simulations and surrogate-
based analyses are conducted for each material, although the same
design of experiments is used to ensure consistent sampling within
the parameter space. Since the focus of this work is on comparing
cathode materials, the electrolyte (1 M LiPFg in EC:DMC) and anode
material (MCMB graphite) remain the same for each set of analyses.
Ranges for all variables are selected based on values reported in the
literature for the corresponding material.

Methodology

Battery cell model and relevant dimensions.— In this study, a
single discharge of a cell consisting of a cathode-electrolyte-anode
system is modeled using the porous electrode formulation with con-
centrated solution theory.'® A schematic of the cell configuration con-
sidered in this model is shown in Figure 1. The computational domain
consists of two separate dimensions, each with a corresponding length
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Figure 1. Configuration of a battery cell showing the cathode thickness L+
and particle radius Rs p.

scale. An axial dimension across the thickness of the cell models the
electric potential distribution in the solid and liquid phases via Egs. 1
and 2, respectively.

o =J=0 [1]

oo+ (b (nc))+J3=0 [2
The effective transport coefficients ©f and °f are calculated from
bulk properties using a Bruggeman correction to account for electrode
porosity. As indicated in Figure 1, the relevant length scales for the
electron and ion conduction processes are the electrode and separator
thicknesses, denoted L_ for the anode, L. for the cathode, and L, for
the separator. The axial dimension also models lithium ion diffusion
in the liquid phase using Eq. 3.
1—1t° i 10
- = . DEff c, + + iy — + 3
2 2 G F 2 3 [3]
A second radial dimension models the effect of particle size on the
lithium ion distribution within the electrodes by calculating the time-
dependent ion concentration distribution within spherical particles
using Eq. 4.

C2

(4]

The length scale for the radial dimension is the particle radius,
denoted R, for the anode and R, for the cathode. For the dimensional
analysis performed in this study, it is important to use the correct
length scale when deriving dimensionless parameters associated with
conduction and diffusion.

Note that radial diffusion equation is solved at each axial compu-
tational node in the electrodes, but not the electrolyte which contains
no active solid. The axial and radial dimensions are coupled via the
Butler-Volmer equation for electrochemical kinetics at the solid-liquid
interface. Although this formulation cannot resolve the detailed mi-
crostructure of the electrode materials due to homogenization, it has
the advantage of being computationally inexpensive, and has thus
been commonly used as a method for studying cell performance.®
The computational efficiency allows us to conduct a large number of
simulations to examine the large parameter space. Further details of
the battery cell model have been summarized by Doyle et al.*®

Surrogate modeling framework.— The surrogate modeling pro-
cess is illustrated in Figure 2. The following is a brief overview of
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Figure 2. Schematic of surrogate modeling framework. Processes in red are
part of the MATLAB surrogates toolbox.

the key steps to this process; further details have been provided by
Queipo et al.*’

Once the design variables and objective functions have been de-
fined, the next step requires performing a design of experiments to
select the simulations to be used for building the surrogate models.

Design of Experiments.—The design of experiments consists of the
set of inputs to the battery cell simulations from which simulation data
will be obtained to train the surrogate models. To capture data at the
extremities of the design space while ensuring an unbiased sampling
of the full range of each design variable, an approach combining face-
centered composite design (FCCD)* and Latin hypercube sampling
(LHS)* points is employed in this study.

Surrogate Model Construction.—The data obtained from the design
of experiments are used to construct surrogate models that make use
of regression and interpolation techniques to approximate the ob-
jective function within the full design space. There are many types
of surrogate modeling strategies available; in this study we consider
polynomial response surface (PRS), kriging (KRG), and radial basis
neural network (RBNN) models. The PRS models consist of a lin-
ear combination of polynomial basis functions, whose coefficients are
determined using a least-squares regression approach. The KRG mod-
els consist of a combination of low-order polynomial regression and
correlation functions based on the distance from training data points
in the design space.? The RBNN models approximate the objective
function as a linear combination of Gaussian radial basis functions.?

Error Assessment.—Error measures are necessary to validate the sur-
rogate models. Two error assessment strategies are used in this study:
prediction error sum of squares (PRESS), and independent test data.
PRESS is the sum of “leave-one-out” errors, which are the errors be-
tween the true data values and those predicted from a reconstructed
surrogate from all other data points from the design of experiments.
Although PRESS values do not require additional data, they can be
expensive to compute if the design of experiments contains a large
number of data points, and may not necessarily be representative of
the true error if the number of data points is small, since the surrogate
model is constructed from a different design of experiments. In ad-
dition to PRESS, prediction errors at independent test points are also
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Table I. Variables and ranges. Table I1. Electrode material properties.
Variable Minimum Maximum References Specific capacity Cut-off
Cycling rate c/10 10C Material Density (kg/m?3) (mAh/g) voltage (V)
LiMn,04 LiMn,04 4280 148 3.0
Particle size 50 m 15 m 25 LiFePOy 3580 170 3.0
Diffusivity 1.0x107m?/s 1.0 x 1072 m?/s 26-28 LiCoO, 5010 274 3.0
Conductivity 1.0 x 1076 S/m 10 S/m 29, 30 LiVeO13 3900 417 1.8
LiFePO, LiTiS; 2285 225 1.6
Particle size 0.02 m 80 m 31 LiCg 2260 372 -
Diffusivity 10107 m?/s 1.0 x 1071 m%/s 32,33
Conductivity 1.0 < 1075 S/m 10 S/m 32,34 e . .
LiCoO, optimize the cell,_the electrodes can be unbalanced for consistency in
Particle size 0.03 m 6.0 m 35 numerical analysis. ) ) ) o
Diffusivity 16 %107 m2s 1.0 x 10~ m2/s 36-38 The output function of interest is the energy density, which is
Conductivity 20 S/m 5.0 < 10% S/m 39 computed by time-integrating the cell voltage curve obtained from
LiVeOis solving the governing equations, and multiplying by the discharge
Particle size 10 m 25 m 40, 41 current and other appropriate constants to obtain the total energy
Diffusivity 50x 10718 m%/s  35x 10712 m?/s 42 provided during the discharge simulation. This value is then converted
Conductivity 1.0 x 1073 S/m 1.0 x 1072 S/m 42 to mass-specific energy density by dividing by the combined mass of
LiTiS; the active and inactive solid, liquid, and current collectors.
Particle size 01 m 10 m
Diffusivity 4.0>x107Y m?/s 5.6 % 1078 m?/s 43 Global sensitivity analysis.— A single design of experiments in di-
Conductivity 5.0 S/m 33.3 S/m 43,44 mensionless variables consisting of 1296 points in a Latin hypercube

computed. The selection of these points requires a separate design
of experiments and simulation data. Additional validation criteria are
also available for regression-based models like PRS, such as the coef-
ficient of determination (R?) and adjusted coefficient of determination
(Rzadj)-

Global Sensitivity Analysis.—The relative magnitudes of impact each
input variable has on the objective function can be compared using
global sensitivity analysis. An approach similar to that developed by
Sobol is implemented in this study.?? A five-point Gauss quadrature
method is applied to the surrogate model to compute measures of the
relative sensitivity of the objective function to each input variable,
known as sensitivity indexes. For simplicity, only the main sensitivity
index, which captures the first-order effects, is considered in this study.

Results

Problem setup.— As mentioned previously, the variables serving
as inputs to the surrogate model are the particle size, diffusivity, and
conductivity of each cathode material, as well as the C-rate. The
ranges considered in this study are summarized in Table I, along with
appropriate references. No literature on the size of LiTiS, particles
was available, so bounds were selected to capture a wide range of
scenarios. Since the parameter ranges span several orders of magni-
tude in many cases, a base-10 logarithmic transformation is used to
convert between the dimensionless sampling variables and physical
variables in the design of experiments. An advantage of the surrogate
modeling approach is that interdependencies among the parameters
are automatically captured by mapping the global parameter space,
and the surrogate models are able to separate first-order effects from
higher-order cross-effects. Therefore, there is no need to model the
effects of particle size on volume fractions or transport coefficients.

Additional material properties for the cathode materials are listed
in Table I1, and fixed parameter values for the cell simulations in
Table 111. Open circuit voltages for LiVgOs3, LiFePO,, and LiMn,04
are taken from refs. 15, 23, 24, while those for the other materials are
found in the database in version 5.1 of the dualfoil program. In all
cases the electrolyte is 1 molar LiPFg in EC:DMC and the inert filler
is PVDF.

Note that since identical values for the volume fraction of all phases
and thickness of the electrodes are used in all simulations, the total
capacity in the two electrodes is not balanced. Since the objective of
this work is to analyze and compare different materials rather than to

sampling arrangement is used for all five cathode materials. A pro-
cess for identifying critical diffusivity and conductivity values using
global sensitivity analysis is established as follows. The simulation
results are sorted according to diffusivity magnitude, and a succession
of data sub-sets are compiled for an increasingly narrower diffusivity
range by increasing the lower bound. Independent surrogate models
are constructed at each stage, and used to compute global sensitivity
indices. In this manner, the critical value can be identified when the
impact of diffusivity vanishes for a given lower bound. Figure 3 shows
that for all materials besides lithium titanium sulfide, the effect of dif-
fusivity is dwarfed by either conductivity or cycling rate. For lithium
titanium sulfide, however, the effect of diffusivity is significant over
the full range, and gradually decreases until becoming negligible at
about 2.4 x 107 m?/s. Since diffusivity can be determined as a
function of lithium ion concentration®® and voltage,*® quantifying this
critical value establishes a benchmark to aim for when designing or
processing materials with similar chemistry. The global sensitivity

Table I11. Fixed parameter values for cell simulations.

Parameter Value
Initial stoichiometric parameter 0.8
for anode (x in LixCs)
Initial stoichiometric parameter 0.1
for cathode (y in LiyMnz0Og, etc.)
Anode thickness 100 m
Cathode thickness 100 m
Separator thickness 25 m
Positive current collector thickness 25 m
Negative current collector thickness 25 m
Ambient temperature 298 K
Diffusion coefficient in anode 5.0 x 10718 m?/s
Electrical conductivity in anode 100 S/m

5.34 x 1010¢=065¢c m2/g
0.0911+1.91¢-1.05¢2+0.155¢3

Diffusion coefficient in electrolyte
lon conductivity in electrolyte

Particle size in anode 10 m
\Volume fraction of inert filler in cathode 0.2
Volume fraction of electrolyte in cathode 0.3
Volume fraction of inert filler in anode 0.1
Volume fraction of electrolyte in anode 0.3
Electrolyte LiPFg in EC:DMC
Initial salt concentration 1000 mol/m?3
Density of electrolyte 1324 kg/m?®
Density of inert filler 1800 kg/m?
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Figure 3. Main sensitivity indexes for various diffusivity ranges.

analysis results also demonstrate that in most cases, adequate cell en-
ergy performance can be achieved so long as conditions independent
of the diffusivity are satisfied.

A similar analysis is performed for conductivity and the results
are plotted in Figure 4. In the case of lithium cobalt oxide, lithium
vanadium oxide, and lithium titanium sulfide, the lower bound for
conductivity is sufficiently high to not significantly affect the cell per-
formance. However, for lithium manganese oxide and lithium iron
phosphate, conductivity is found to have a strong effect on perfor-
mance, and critical values of about 0.01 S/m and 0.2 S/m are iden-
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Figure 4. Main sensitivity indexes for various conductivity ranges.
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Figure 5. Separation of operating regimes based on dimensionless time.

tified, respectively. Again, quantification of these values can provide
guidelines for processing and manufacturing. For instance, these re-
sults, in conjunction with recent progress in modeling the influence
of additives on conductivity,*’ can be used to optimize the amount of
conductive additive to introduce to the undoped cathode material.

Dimensionless parameterization.— Although the input variables
are treated as being independent in the design of experiments, their
effects within the battery cell are coupled. It is reasonable, then, to
seek a way to combine the variables in a more efficient manner in order
to reduce the problem dimensionality. This can be done by performing
dimensional analysis, in which the output is modeled not as a func-
tion of independent input variables, but as a function of newly defined
dimensionless parameters that combine multiple physical variables.
Dimensional analysis has been used previously to compare charac-
teristic diffusion and discharge time scales for lithium manganese
oxide,*® and is also widely used in fields such as fluid mechanics and
heat transfer for characterization and scaling analysis.*°

The diffusivity Ds, has dimensions of length squared divided by
time, and appears as a coefficient in Eq. 4, whose corresponding length
scale is the particle radius R . These two variables can be combined
to yield a characteristic time scale for the diffusion equation.

i
D, [5]

Another important time scale is the time required to discharge the

cell, which is estimated from the definition of cycling rate.

k
taischarge = 6 [6]

Laiffusion =

The constant k = 3600 seconds/hour ensures that the two length
scales have consistent units. We can thus define a dimensionless time
parameter " as the ratio of the two time scales.

_ tdischarge _ sz,p
tdiffusion C RSZYP

(7]

Physically, * represents the relative speed of the diffusion and
discharge processes. When the magnitude of * is very large, ions
travel much faster through the particle via diffusion than they are
transferred across the cell. Conversely, when the magnitude of
is very small, the cell utilization is limited by the diffusion rate. A
log-scale plot of the computed specific energy against ™ is shown in
Figure 5.

Aside from significant scatter in the data, two distinct regions can
be identified in Figure 5: the maximum achievable specific energy
increases monotonically in the low- * range up to some critical point,
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