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The accurate prediction of transition is relevant for many aerodynamic analysis and design applications.
Extending the laminar flow region over airframes is a potential way to reduce the skin friction drag, which in
turn reduces fuel burn and greenhouse gas emissions. This paper introduces a numerical framework that
allows for the inclusion of transition effects for high Reynolds number flows in a high-fidelity, Reynolds–
Averaged Navier–Stokes (RANS) aerodynamic design framework. The CFD solver uses a discontinuous Galerkin
(DG) finite element approach and includes goal-oriented adaptation. The Spalart-Allmaras (SA) turbulence
model is used for the closure of the governing equations. In the flow stability analysis, the nonlocal, nonparallel
effects that characterize boundary layers are accounted for by using the Parabolized Stability Equations (PSE).
Transition onset is obtained through an eN method based on the PSE calculations, while a smooth intermit-
tency function allows for the inclusion of the transition region length. Numerical results for the NLF(1)-0416
airfoil present very good agreement with experimental data.

I. Introduction

Transition to turbulence is an important topic in fluid mechanics and impacts the performance of several engineer-
ing applications. Viscous drag has a major impact on fuel efficiency in modern commercial aircraft. Therefore, laminar
flows are continuously investigated in the aerospace industry as a tool for increasing overall airplane efficiency, with
potential benefits in direct operational costs. In addition, the correct estimation of drag and lift coefficients depends
on the precise calculation of the laminar regions in the airframe.

In typical aerospace configurations, several mechanisms can trigger transition to turbulence. The amplification of
unstable Tollmien-Schlichting (TS) waves usually causes transition in wings with low sweep angles. In the transonic
flow regime, wings with high sweep angles are commonly affected by transition caused by crossflow (CF) vortices.
Two types of CF instabilities exist: stationary CF vortices and traveling CF waves. From the physical point of view,
these two different families of modes are generated by distinct receptivity mechanisms.1 While stationary CF vortices
are excited by surface variations (surface polishing or suction), traveling CF waves are triggered by an unsteady source,
such as freestream turbulence.2 Only for turbulence levels Tu > 0.2% and smooth surfaces do the traveling instability
waves dominate.3 Laminar separation bubbles (LSB) can cause transition in separated flows. Reattachment may take
place since turbulent boundary layers are more resistant to adverse pressure gradients than laminar ones. Leading-edge
attachment line contamination occurs when the turbulent boundary layer of the fuselage runs onto the leading edge of
a swept wing, resulting in the loss of laminar flow over the wing.4 In addition, attachment line transition takes place if
disturbances are amplified in the leading edge region. This happens depending on the flow and leading edge geometry.
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In the last few decades, different tools have been proposed to consider transitional flow effects in computational
fluid dynamics (CFD). Simplified methods include database methods and analytic criteria. The latter consider in-
formation deduced from experimental data, while the former rely on the disturbance growth computation based on
tabulated values or based on analytic relations obtained from exact stability calculations which are, in general, per-
formed over self-similar velocity profiles.2 These methods have been first proposed by Gaster and Jiang (1994),5 van
Ingen (1996),6 and Stock (1996).7 Other examples of database methods are the neural network framework presented
by Crouch [8] and the three-parameter database approach used by Drela9 in a coupled inviscid-viscous flow solver.

Reynolds–Averaged Navier Stokes (RANS) turbulence models, which are commonly used in engineering appli-
cations, can be seen as the result of a Favre time-averaging of the original Navier– Stokes equations. As a result,
important spectral information is missing.10 The natural approach to overcome such a difficulty is the development
of an extra model for the transitional region and its integration into the original turbulence closure. Modeling of
transition to turbulence is performed through the inclusion of additional transport equations, generally by adopting an
intermittency field. At present, such modified RANS models can account for different transition mechanisms, and the
specification of boundary conditions for turbulent variables has strong effects on the correct prediction of transitional
flows over typical aerospace configurations.11 A detailed review of RANS-based transition analysis is provided by
Pasquale et al. [12].

Large Eddy Simulations (LES) can also be used as a tool to study transitional flows. By solving for the large
eddies and modeling the small ones, the technique can be employed to study low-Reynolds, transitional flows. For
instance, Uranga et al. [13] performed the simulation of the transitional flow around an airfoil based on the Implicit
LES (ILES)approach, using a discontinuous Galerkin (DG) method. Fernandez et. al. [14] extended the use of the
ILES technique for transitional flows to a hybridized DG (HDG) method and considered flows over aeronautical
and compressor cascade airfoils with Reynolds numbers up to 460, 000. As of now, the use of LES approaches is
computationally limited to low and moderate Reynolds numbers.

Direct Numerical Simulation (DNS) is the highest-fidelity approach in the numerical description of fluid flow. In
fact, DNS methods can be used to accurately simulate laminar flow breakdown, the development of turbulent spots, and
transition to fully-developed turbulent flow.15 Since eddies down to the the Kolmogorov scale are directly resolved,
stringent requirements are imposed in the mesh size. No additional turbulence modeling or closure assumptions are
necessary. As a result, DNS calculations are very expensive and, at present, they are not used for industry-relevant
aerodynamic configurations.

Stability analysis is a mathematical tool that identifies the growth and decay of certain modes in fluid flows.
Unstable amplification of modes leads to instability and the eventual onset of a fully-turbulent state. Typically, the
instability of flows to small amplitude perturbations is analyzed using the modal approach,16 and both temporal and
spatial problems can be considered. The oldest method to characterize boundary layer instabilities is based on the
linear Orr-Sommerfeld equation2 (OSE) and represents a local, parallel analysis. This method is usually referred to
as Linear Stability Theory (LST), even though there are other linear stability analysis tools that do not consider local
and parallel baseflows. LST has been widely used to study transition to turbulence and a comprehensive review can
be found in the literature.17 Its main shortcoming is the fact that the boundary layer growth is not considered. Also,
nonparallel effects are not included in the formulation and curvature effects cannot be accounted for.

A nonlocal, nonparallel stability analysis can be used to take into account both nonparallel and history effects,
both relevant in boundary layer flows. One example of this approach are the Parabolized Stability Equations (PSE)
[18,19,20]. This method allows for the study of the convectively-unstable waves evolution in boundary-layer flows.
Both TS and CF instabilities can be considered. The computational cost is of the same order as the one for the
traditional LST approach.2 The possibility of including important physical aspects to the analysis at an affordable
computational cost makes the PSE an ideal tool for transition prediction, and some recent studies21 highlight the
relevance of using PSE for transition analysis over general aerospace configurations. A complete review of the use of
stability analysis tools for transition prediction is available in Ref. [22]. For transition purposes, the use of linear tools,
in which the disturbances amplitudes are infinitesimally small, is an efficient approach.

By using the PSE method, growth rates can be obtained for disturbances superimposed to a given baseflow. The
growth rates integration leads to an N-factor that can then be used to predict the onset of the transition region, as first
proposed by van Ingen.23 A smooth, continuous intermittency function can be used to estimate the transition region
extent. The resulting information for the transition front and transition length is then used to select regions of laminar
and turbulent flow within a RANS framework.

Previous work24 demonstrated the successful integration of an LST method for transition prediction with a finite-
volume RANS solver. In the present paper, we introduce effects of transition to turbulence as predicted by a PSE
capability into a discontinuous Galerkin CFD code that solves a RANS formulation and includes goal-oriented adap-
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tation. In contrast to other publications that used an ILES approach to handle transitional flows with a DG method,13, 14

our implementation targets high Reynolds numbers that are more representative of large aircraft configurations. We
present results for the NLF(1)-0416 airfoil for which a vast amount of experimental of data is available in Ref. [25].

The inclusion of transition to turbulence based on the PSE approach in an optimization capability will enable us to
perform aerodynamic shape optimization including laminar flow regions and it is the next stage of the present research
project. High-fidelity aerodynamic optimization is now a very active research field with industrial applications. The
evolution of this topic can be traced back to the work of Hicks et al. [26], in which the airfoil optimization problem
was considered. The use of the adjoint method in fluid mechanics was first introduced by Pironneau,27 who derived the
adjoint of the Stokes equations and of the Euler equations.28 Jameson extended the method to inviscid compressible
flows29 making it suitable for transonic airfoil design. At present, complex aircraft configurations are optimized
considering high-fidelity, RANS-based CFD calculations. As an example, Lyu et al. [30] were able to perform the
lift-constrained drag minimization of the NASA Common Research Model (CRM) wing with a RANS turbulence
model. The corresponding wing-body-tail configuration was also optimized by Chen et al. [31]. In a DG CFD solver,
aerodynamic shape optimization using output-based adapted meshes has also been performed.32

II. Governing Equations and Discretization

II.A. Discontinuous Galerkin Finite-Element Method

The equations governing the fluid flow system in this work can be written in conservative form as

∂u

∂t
+∇ · ~F(u,∇u) + S(u,∇u) = 0. (1)

This general form encompasses scalar advection-diffusion-reaction and the compressible Navier–Stokes equations.
For the latter, u is the conservative state vector composed of the flow variables, ~F denotes the total inviscid and
viscous flux vectors, and S represents the source term required when modeling turbulence. When running Reynolds-
averaged turbulent cases, we use the Spalart-Allmaras (SA) one-equation model, with a negative turbulent-viscosity
modification.33

We discretize Eq. [1] with the discontinuous Galerkin (DG) finite-element method, which is suitable for high-order
accuracy and hp-refinement.34, 35, 36 The computational domain Ω is divided into a shape-regular mesh Th consisting
of Ne non-overlapping elements Ωe, Th = {Ωe :

⋃Ne
e=1 Ωe = Ω,

⋂Ne
e=1 Ωe = ∅}. In DG, the state components are

approximated by piece-wise polynomials in the approximation space Vph , with no continuity constraints imposed on
the approximations between adjacent elements. The approximation space consists of element-wise polynomials and is
defined as Vph = {vh ∈ L2(Ω) : vh|Ωe

∈ Ppe ,∀Ωe ∈ Th}, where Ppe denotes polynomials of order pe on element Ωe,
a distribution that is not necessary uniform throughout the mesh. The weak form of Eq. [1] follows from multiplying
the equation by test functions (taken from the approximation space), integrating by parts, and coupling elements via
unique inter-element fluxes. We use the Roe approximate Riemann solver37 for the inviscid flux, and the second form
of Bassi and Rebay (BR2) for the viscous flux.38 Choosing a basis for the test and trial spaces yields a system of
nonlinear, algebraic equations,

RH(UH ,x) = 0, (2)

where, RH is the discrete residual vector, a nonlinear function of the discrete state vector UH and the design variables
x. For the steady state problems considered in this work, RH is the discrete spatial residual vector. The subscript H
refers to the discretization fidelity of the approximation/test space with respect to the approximation order and mesh
refinement.

II.B. Modal Linear Stability Analysis

In the stability analysis approach, the overall principle is based on the decomposition of any flow property q into
a steady base state q̄ and an unsteady perturbation component, q̃, as follows:

q(x, t) = q̄(x) + εq̃(x, t), (3)

where x is the space coordinate vector, t is the time, and q = (ρ, u, v, w, T ) is the flow state vector. We further observe
that, as long as we consider the linear stability problem, the perturbations have small amplitudes such that ε � 1.
When such an ansatz is applied to the Navier–Stokes equations, a linearization is performed by neglecting terms of
O(ε2) and O(ε3). The equations for the steady flow, which also respect the Navier–Stokes equations, are subtracted,
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and one obtains the linearized perturbation equations, referred to as the Linearized Navier–Stokes equations, LNSE.
The LNSE can be written as an initial value problem. If the baseflow q̄ is steady, time and space dependencies
can be split in this equation. This allows for the introduction of a Fourier decomposition in time by means of the
relation q̃ = q̂ exp(−iωt), with ω the angular frequency. Naturally, the linearization introduced in the Navier–
Stokes equations, leading to the LNSE, is only valid when the disturbance amplitude remains small such that the non-
linear terms are negligible. Indeed, the real, nonlinear system might present an unstable behavior if finite-amplitude
disturbances are considered, under conditions in which the linearized system remains stable.

In modal linear stability analysis, the perturbation term is written as the product of an amplitude q̂ and a phase
function Θ:

q̃ = q̂eiΘ. (4)

Different stability methods are based on distinct assumptions regarding the topology of the baseflow q̄ and the
fluctuation q̃. The overall differences between LST (Orr-Sommerfeld) and PSE methodologies are presented in Table
[1]. In Table [1], α = 2π/Lx is the streamwise wave number, β = 2π/Lz is the spanwise wave number, with Lx and

Table 1: General classification of modern stability analysis theory.16

Method Assumption Baseflow Amplitude Function Phase Function Θ

PSE ∂xq̄� ∂yq̄; ∂zq̄ = 0 q̄(x∗, y) q̂(x∗, y)
∫
α(x′)dx′ + (βz − ωt)

LST ∂xq̄ = ∂zq̄ = 0 q̄(y) q̂(y) α(x) + (βz − ωt)

Lz the wavelengths in the streamwise (x) and spanwise (z) directions, respectively. Also, ω is the angular frequency,
and x∗ represents the slow variation of the baseflow properties in the streamwise direction. The wall-normal direction
is denoted by y.

The first flow stability studies focused on flows in which inhomogenity is observed in only one spatial direction.
This is the case of a channel flow in which the baseflow only presents variations in the wall-normal direction. In this
specific case, ∂xq̄ = ∂zq̄ = 0, and q̄(x) = q̄(y). Such approximations are valid for parallel flows, such as Couette
and Pouiseuille flows.39 The introduction of a Fourier decomposition along the streamwise, x, and the spanwise, z,
directions may be written to derive different variations of the Orr–Sommerfeld equations.40

Boundary-layer flows are characterized by two inhomogeneous spatial directions, with the baseflow depending
both on streamwise and normal coordinates, with slow variations in the streamwise direction, i.e., ∂xq̄ � ∂yq̄. To
solve such a type of flow, the Parabolized Stability Equations (PSE) method was first introduced by F. Bertolotti and
T. Herbert [41, 18, 19]. In contrast to the eigenvalue problem represented by the Orr–Sommerfeld equations, the
PSE technique solves the stability problem by integrating the LNSE, via a marching procedure, along the streamwise
direction. The initial values for the eigenfunctions q̂ and the streamwise wavenumber (α) are obtained from a local
stability analysis performed in the first streamwise station. Comprehensive reviews of the PSE method can be found
in references [42] and [20].

II.C. PSE Theoretical Formulation

The PSE technique aims at representing baseflows in which variations in the streamwise direction are much smaller
than those in the wall-normal direction. Mathematically, this can be expressed as

∂xq̄� ∂yq̄; ∂zq̄ = 0, (5)
q̄(x) = q̄(x∗, y), (6)

where x∗ is a scaled version of x used to represent the slow variation of the baseflow in the x direction. From the
baseflow assumptions, it follows that the PSE method is well-adapted to the prediction of flows such as boundary
layers, jets, wakes, and mixing layers when high Reynolds numbers are considered. The important aspect to observe
is that the PSE methodology is valid for convectively unstable flows.

The baseflow velocity components ū and v̄, aligned with the streamwise and spanwise directions, respectively,
exhibit small variations in the streamwise (x) direction and are constant along the spanwise (z) direction. We introduce
the local Reynolds number, Re = Ueδ(x)/ν with ν the kinematic viscosity and δ(x) a characteristic length scale
proportional to the boundary layer thickness, δ(x) =

√
νx/Ue, with Ue the unperturbed edge velocity. The wall-

normal component, w̄, is nonzero and scales with 1/Re. Formally defining the slowly varying scale x∗ = x/Re, the
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scaling are:

w̄ ∼ 1

Re
,

∂

∂x∗
∼ 1

Re
,

α = α (x∗) ,

q̂ = q̂ (x∗, y) .

(7)

With these scaling in mind, one can observe that ε ∼ 1/Re.
The perturbation vector is expanded in terms of its truncated Fourier components assuming time-periodicity,

q̃(x, y, x, t) =

M∑
m=−M

N∑
n=−N

q̆m,n(x, y) exp [i (mβz − nωt)] , (8)

where q̆ represents the fast varying wave function with a slowly-varying amplitude q̂(x, y):

q̆m,n(x, y) = q̂m,n(x, y) exp

[
i

∫
x

αn (x′) dx′,

]
(9)

and q̂(x, y) has a slow variation in x. If a linear approach is considered, only one mode for each spanwise direction
and time is needed. Using the PSE approximation, it follows that the streamwise (in the x-direction) derivatives of the
amplitude q̆ are expressed as

∂q̆
∂x

=

(
iαq̂ +

∂q̂
∂x

)
exp

[
i

∫
x

α (x′) dx′
]
, (10)

∂2q̆
∂x2

=

(
−α2q̂ + 2iα

∂q̂
∂x

+ i
dα

dx
q̂
)

exp

[
i

∫
x

α (x′) dx′
]
. (11)

Finally, by replacing equations [9], [10], and [11] in the LNSE, neglecting terms ofO(ε2), and considering the scaling
from Eq. [7], as well as dropping higher derivatives with respect to x or streamwise derivatives in the viscous terms
(noting that ∂

∂x
1
Re ∼ ε

2), the linear PSE equations are written in compact form as

Aq̂ + B
1

hy

∂q̂
∂y

+ C
1

h2
y

∂2q̂
∂y2

+ D
1

hx

∂q̂
∂x

= 0. (12)

The effects of geometry curvature over the disturbances are accounted for by the stretching factors, hx and hy . The
entries for the compressible PSE operators A, B, C, and D can be found in Ref. [43]. The boundary conditions are as
follows:

û = v̂ = ŵ = T̂ = 0 at y = 0, (13)
û = v̂ = ŵ = T̂ →∞ as y →∞. (14)

In the PSE framework, changes in amplitude along the slow spatial direction can be contained both in the amplitude
function q̂ or in the phase function defined in Eq. [9]. To remove such ambiguity, a normalization condition is required.
One possibility for the normalization is imposing∫ ∞

0

û†
∂û
∂x
dy = 0, (15)

where the superscript † represents the complex conjugate. By using the normalization condition proposed in Eq. [15],
one enforces that all fast variations in the streamwise direction (x) are, up to a given acceptable level (such that the
equality in Eq. [15] is close to zero), absorbed into the phase function, such that the scaling of (1/Re) in ∂q̂/∂x is
valid.

The physical growth of an arbitrary disturbance ξ can be defined as16

σ =
1

hx

(
−αi + <

[
1

ξ

∂ξ

∂x

])
, (16)
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where the subscript i indicates the imaginary part. The disturbance kinetic energy is used to measure the disturbance
growth,

E(x) =

∫ ∞
0

(
|û|2 + |v̂|2 + |ŵ|2

)
dy, (17)

and, hence, equation (16) becomes:

σE =
1

hx

(
−αi +

1

2

d

dx
ln [E(x)]

)
. (18)

The set of equations represented in Eq. [12] is intended to be parabolic. Therefore, it is possible to treat the stream-
wise direction, x, as a pseudo-time and then to implement a marching strategy in this spatial direction. Numerical
instabilities appear when the streamwise integration step is too small.16 The reason for that, as explained by Herbert,20

is that there are traces of ellipticity that inject ill-posed characteristics. One remedy for this is the use of a first-order
backward difference scheme with a lower integration step limit ∆x > 1/|αr|. To relax this limit, Andersson et. al.
[44] propose an stabilization procedure leading to ∆x > 1/|αr| − 2s, where s is a small number.

Due to the predominantly parabolic character of Eq. [12], the disturbance evolution is influenced by both local
and upstream flow conditions. Therefore, the parabolized stability equations are recognized as a nonlocal method, in
contrast to, for instance, the Orr-Sommerfeld equation that is a local approach. For three-dimensional flows, there are
some possibilities for the marching direction. Using an orthogonal coordinate system, the most usual approach consists
in orienting the streamwise direction towards a normal to the leading edge, the spanwise direction being parallel to
the leading edge. Another choice would be perform a marching that follows the inviscid streamline. A complete
discussion on suitable marching directions is available in the literature.45, 21 Another relevant aspect to be considered
when using PSE is the starting integration point. It is necessary to place this point some flow stations upstream of the
neutral point location. A deeper discussion on this issue is available in Ref. [46]

III. Transition Prediction

III.A. N-factor and Transition Region Beginning

The beginning of the transition region can be determined based on an eN method. The amplification factor or
N-factor is defined as

N = ln

(
A

A0

)
=

∫
σE (x) dx, (19)

with A0 the disturbance amplitude at the first neutral-stability point. The N-factor envelope is obtained by running the
PSE code using several frequencies and spanwise wave numbers and superimposing the resulting N-factor curves at
each station during the PSE solve.

The position in which the transition region starts, xTR,beg, is allowed to be in between two cells by using a simple
linear interpolation that considers the two mesh points in between which the N-factor envelope satisfies the threshold
value for the amplification factor, usually called critical amplification or critical N-factor. This leads to the following
expression for the transition location,

xTR,beg =
(NR −Ncrit)xL + (Ncrit −NL)xR

(NR −Ncrit) + (Ncrit −NL)
, (20)

where xL and xR are, respectively, the left and right neighbors of the position where Ncrit is reached and NL and NR
are the corresponding N-factor values. The critical value for the N-factor, Ncrit, can be obtained from experimental
data. For some transition mechanisms, empirical correlations are available. For Tollmein-Schlichting waves, Mack47

suggested the following empirical correlation relating the critical N-factor to the turbulence level, Tu,

Ncrit,TS = −8.43− 2.4 ln (Tu) . (21)

This correlation is valid for 0.001 < Tu < 0.01, and sometimes is also used to indicate critical values for crossflow
(CF) vortices, as in Ref. [21]. Since flow stability tools only provide the transition region starting point (transition
onset), additional correlations are used to estimate the length of the transition region. Our framework also includes
correlations that allow for the prediction of transition triggered by flow separation through laminar separation bubbles
(LSB) and leading edge transition and contamination, as it is further discussed in Ref. [24].
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III.B. Intermittency Function and Interaction with the Spalart-Allmaras Turbulence Model

Physically, the intermittency indicates the probability of a flow location to be turbulent. We use a smooth intermit-
tency function to generate the transition region in a RANS computation framework. This function reads

γ = 1− exp−0.413ξ2 , (22)

where

ξ =
3.36

(
s− sbeg

tr

)
(
send
tr − s

beg
tr

) , (23)

with s the arc length measured from the stagnation point. In Eq. [23], the superscripts beg and end refer to the
beginning and end of the transition region, respectively. The ending arc point, send

tr , is determined based on the
correlation below,48

send
tr = 2.3

√
Ue
νe

(δ1)
1.5

+ sbeg
tr , (24)

where Ue and νe are the velocity and kinematic viscosity at the boundary layer edge, respectively, and δ1 is the
boundary layer displacement thickness. All these quantities are evaluated at the flow position corresponding to sbeg

tr .
The intermittency function γ is used as a factor of both production and destruction terms in the SA turbulence

model such that the eddy viscosity production is suppressed in laminar regions.49 The governing equation for the SA
model33 working variable, ν̃, is then modified and reads

Dν̃

Dt
= γP − γlimD + T +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]
, (25)

where P and D are, respectively, the production and destruction terms and γlim reads50

γlim = min [max (γ, 0.1) 1.0] . (26)

A deeper discussion of the other variables in Eq. [25] can be found in Ref. [33].

III.C. Transition Module Coupling with CFD Solver

The interaction between the CFD and the transition module, that is able to perform both LST and PSE analyses,
is illustrated in Fig. [1]. The laminar baseflow can be obtained using two different approaches. Our conical boundary

Figure 1: Workflow for the transition prediction capability, adapted from Ref. [24].

layer code can be used to provide the laminar flow field given a pressure coefficient (cp) distribution. It is also possible
to extract the baseflow from the CFD solver itself. A set of suitable waves is then provided by our LST code. These
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waves, along with baseflow information, are then sent to the PSE capability, which provides the transition onset point.
The intermittency function shown in Eq. [22] is then prescribed to all mesh elements such that the turbulence model
can allow for laminar, transitional, and turbulent regions. This process is iterative. For flows that are shock wave-free
or in which these are weak, the iterative process might not be necessary as the cp distribution is not strongly affected
by including transition and, as a result, the transition location does not present significant variations during the iterative
process. If moderate to strong shock waves are present, then the transition location will only converge after iterating
as indicated in Fig. 1.

IV. PSE Verification

Our compressible PSE tool is able to advance the PSE solution using both first and second-order implicit schemes
and considers 2 and 2.5-D baseflows with uniform or nonuniform meshes. The stabilization procedure suggested
in Ref. [44] is also included in the implementation. A growing mesh that emulates the boundary layer growth is
included as an option. The normal to the wall direction is discretized using a spectral method based on the Chebyshev
collocation points with a suitable mapping to the computational domain, with point clustering close to the wall and
boundary layer edge for high-speed flows. The curvature metrics highlighted in Sec. [II.C] are also included in the
current implementation. Curvature effects are also introduced in the baseflow quantities inside the PSE operators. The
first streamwise position is solved using a local method based on the PSE operators without the nonparallel terms. The
resulting eigenfunctions are then used as starting values for the PSE marching.

IV.A. Subsonic and Supersonic Flat Plate Test Cases

To verify the compressible PSE implementation, two flat plate test cases are performed: low and high Mach number
flows. In both cases, results are compared to those obtained with the NOLOT code, which is a linear, compressible
PSE implementation.43 Our PSE code is named StabFlow.

For the low Mach number test case, we select a constant, dimensionless reduced frequency F = 1.4× 10−4. The
reduced frequency is related to the dimensional frequency, f , according to F = 2πf

(
ν/U2

e

)
. The Mach number is

M = 0.01 and the marching ranges from Reδ = 100 to Reδ = 650, Reδ being the Reynolds number based on the
Blasius characteristic length variable. The freestream temperature is T = 299 K and the Prandtl number is Pr = 0.71.
For this test case, the waves are aligned with the streamwise direction (β = 0). For this simulation, 60 Chebyshev
points are used in the wall-normal direction. The results for the energy-based growth rate, σE , can be seen in Fig. 2.
The agreement between the benchmark code (NOLOT) and our implementation (StabFlow) is good for both growing

(a) M=0.01 (b) M=1.6

Figure 2: Energy-based growth rates for subsonic (left) and supersonic (right) flow over a flat plate.

and rectangular meshes.
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A numerical simulation considering supersonic flow at M = 1.6 over a flat plate is considered. The freestream
temperature is T = 300 K and the Prandtl number is Pr = 0.71. For this specific test case, we choose an oblique
wave with β/R = 1.52×10−4 and a reduced frequency F = 5.0025×10−5. The marching extends from Reδ = 200
to Reδ = 1400 with a step of ∆Reδ = 30. The simulation is converged for 60 Chebyshev points in the wall-normal
direction. The results for the energy-based growth rate, σE , are depicted in Fig. 2. Once again, the results are in good
agreement with the NOLOT data. Some transient effects appear in the early marching stations and vanish afterwards.

To inspect the eigenfunctions, we observe the wave amplitudes for the three velocity components, temperature, and
density at the marching mid-station. The results are illustrated in Fig. 3. The wall-normal perturbation velocity decay is

(a) Perturbation velocity components (b) Perturbation temperature and density components

Figure 3: Normalized, absolute values of eigenfunctions in the mid-station for flow at M = 1.6 over a flat plate.

the one that requires a larger computational domain, as can be seen in Fig. 3. For this reason, the computational domain
should be as large as 100 to 200 times the local reference length at each marching station if TS waves are included.
Crossflow instabilities, on the other hand, decay faster in the freestream and a smaller computational domain can be
considered.

IV.B. NACA 0012 Airfoil

We use a NACA 0012 airfoil at a zero angle of attack, M=0.1, and chord-based Reynolds number of 1, 3, 5, 8,
and 15 million to further investigate our PSE implementation with transition prediction. As there are no experimental
results for this specific set up, we compare our results to those obtained with our LST capability, which was extensively
validated against experimental data in Ref. [24]. This is a valid test since TS waves are not largely affected by
curvature, nonlocal, and nonparallel effects, that are not accounted for in the LST formulation.

Figure [4] shows the N-factor envelopes for all of the Reynolds numbers mentioned above. The critical N factor,
Ncrit,TS = 8.14 is also represented. This critical N-factor was obtained by using Eq. [21] for a turbulence level
of Tu = 0.1%. Figure [4] also indicates the beginning and end chord locations for the transition region for all 5
flight conditions addressed here. Since the NACA0012 airfoil is symmetric and we use a zero angle of attack, we
only display results for the suction side of the airfoil. We observe that, with increasing freestream Reynolds number,
the transition front moves upstream and the transition region becomes shorter than for smaller freestream Reynolds
numbers, indicating that the model is able to reproduce the fact that, for higher Re numbers, the evolution of the flow
structures that lead to turbulent flow are faster than for lower Reynolds flows.

The results for the beginning of the transition location for the NACA 0012 test cases are illustrated in Table
[2]. Agreement between both flow stability analysis implementations is very good for all of the Reynolds numbers
considered here.
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(a) N-factor envelopes (b) Transition location

Figure 4: N-factor envelopes (left) and transition locations (right) for a NACA 0012 airfoil at multiple Reynolds
numbers.

Table 2: NACA 0012 airfoil transition information for different Re numbers.

Re (million) PSE, (x/c)tr LST, (x/c)tr Percent Error
1 0.498 0.493 0.87
3 0.333 0.349 0.74
5 0.297 0.296 0.39
8 0.249 0.246 1.11

15 0.192 0.191 0.56

IV.C. NLF(1)-0416 Airfoil

The Natural Laminar Flow NLF(1)-0416 airfoil is a general aviation airfoil largely tested at the NASA Langley
Low-Turbulence Pressure Tunnel (LTPT).25 Turbulence intensity measurements in the LTPT wind tunnel indicate that
it is a very quiet test apparatus.51 However, Ref. [49] mentions that the original turbulence intensities for this wind
tunnel might not lead to good agreement with experimental data when used along with transition modeling tools.
Therefore, we choose Tu = 0.1% for this test case. As a result, the critical N-factor is Ncrit,TS = 8.14 as suggested by
Eq. [21].

We select two flight conditions, depicted in Table [3]. According to Ref. [25], transition is triggered by amplifica-
tion of TS waves in the suction side of the airfoil for both of these flight conditions.

Table 3: NLF(1)-0416 flight conditions.

Condition Re (million) M Angle of attack (degrees)
1 4 0.1 0.0
2 2 0.1 4.0

For flight condition 1, our transition prediction framework considers a set of TS waves with frequencies ranging
from 1100 to 2400 Hertz for the suction side of the airfoil, and from 580 to 2000 Hertz for the pressure side. For
flight condition 2, the frequencies range from 1060 to 3000 Hertz for the suction side, and from 700 to 520 for the
pressure side. The frequency and wavenumber ranges are obtained by using a database method.52 For each wave, the
modes obtained from the database method are analyzed in our LST framework in order to determine the neutral point
locations. For flight condition 2, however, transition in the lower side of the airfoil is found to be caused by an LSB,
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differing from all the other situations in which the amplification of TS waves triggers transition to turbulence.
Figure [5] shows the N-envelopes for both flight conditions. For flight condition 2, the N-envelope is not shown

for the pressure side since transition takes place by means of an LSB for this case. Table [4] indicates the numerical

(a) Flight condition 1 (b) Flight condition 2

Figure 5: N-factor envelopes for condition 1 (left) and condition 2 (right) for the NLF(1)-0416 test case.

and experimental transition locations for this test case. The experimental transition locations in Ref. [25] are obtained
through the use of acoustic devices that do not precisely detect transition. Instead, this method suggests bounds inside
which transition takes place. Then, a curve is fitted, passing inside the bounding regions, in order to indicate the likely
transition location. The experimental results shown in Fig. [4] are based on this curve. This approach certainly inputs
some additional uncertainty on the transition location placing.

Table 4: NLF(1)-0416 airfoil transition information.

Condition, side PSE, (x/c)tr Experiment, (x/c)tr Percent Error
1, upper 0.375 0.385 2.56
1, lower 0.497 0.525 5.34
2, upper 0.291 0.310 6.03
2, lower 0.570 0.640 10.85

Despite of the uncertainties involved with the experimental transition location, the results provided by our PSE
implementation are in good agreement with experimental data. For the airfoil pressure side in flight condition 2, the
larger mismatch between numerical and experimental result follows the trend that linear stability analysis tools tend
to predict transition caused by LSBs upstream of its experimental location. Indeed, the way a separation bubble is
accounted for in this type of framework involves the divergence of the boundary layer code. Boundary layer calcu-
lations involve a marching, hence they represent a parabolic problem whose underlying hypotheses are similar to the
ones considered for the PSE approach. When the flow separates, the slow streamwise variation hypothesis does not
hold, and the marching procedure diverges. Correlations indicated in Ref. [24] provide a tool to estimate the transition
region when separation is involved.

V. Transitional Flow Results in a Discontinuous Galerkin RANS framework

We propose the use of PSE as the transition location prediction tool in a Discontinuous Galerkin RANS imple-
mentation. This framework is such that the advantages of a low-dissipation, adaptive CFD framework can be used to
simulate transitional flows at high Reynolds numbers, in contrast to techniques such as ILES, that are restricted to low
to moderate Reynolds numbers.
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V.A. NACA 0012

In order to first verify the concepts presented in Sec. [III], we use the NACA 0012 airfoil results presented in Sec.
[IV] with Reynolds numbers of 5 and 15 million, both for M=0.1 and zero angle of attack.

In the numerical simulations we use DG with approximation order p = 2 on meshes adapted via adjoint-based
output error estimates. An unstructured mesh optimization algorithm through error sampling and error synthesis
(MOESS)53, 54 is adopted to capture the highly anisotropic physics in the boundary layer with moderate degrees of
freedom (DOF). In this paper, our meshes are adapted for the drag output only, given that this is the aerodynamic
coefficient most affected by the transition inclusion. The starting and final computational meshes are depicted in Fig.
[6].

(a) Initial mesh. DOF = 3198 (b) Adapted mesh. DOF = 41190

Figure 6: Examples of initial and adapted meshes for a NACA 0012 run.

Figure [7] shows contours of ν̃, the SA model working variable and directly related to the kinetic eddy viscosity,
for the 5 million Reynolds test case for both fully turbulent and including transition to turbulence simulations. It is
evident that our implementation is able to turn off the turbulence effects ahead of the transition region. After this
position, predicted by PSE, the intermittency function from Eq. [22] is used to turn on the turbulence production and
destruction terms.

(a) Fully turbulent

(b) Transition included

Figure 7: SA model working variable ν̃ contours for the NACA 0012 case at Re=5 million for a fully turbulent
simulation (top) and including transitional effects (bottom). The contour range is from 0 to 0.02.

The effects of transition on the pressure coefficient distribution can be seen in Fig. [8]. The overall cp distribution
looks very similar for both turbulent and transitional test cases, which seems to be physical as no shock waves are
present in this test case. By zooming in on the cp curve around the transition region, however, we observe that the
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transitional flow case presents some small differences with respect to the turbulent case in this region.

(a) cp, overview (b) cp, zoom-in around the transition region

Figure 8: Pressure coefficient distributions. General view (left) and zoomed-in image around the transition region
(right) for the NACA 0012 case with Re=5 million.

To better observe the transition location for the NACA 0012 upper surface at Re=5 million, we observe the skin
friction coefficient, cf , plots for both fully-turbulent and transitional simulations. The results are depicted on the
left of Fig. [9]. The inclusion of a laminar region, followed by a transitional length, in the simulation leads to a
smaller skin friction coefficient, as expected. In addition, the cf rise around (x/c) = 0.3 is another indication that
transition, predicted to start at (x/c) = 0.33 by our PSE approach, is being correctly reproduced within the RANS
framework. Inspection of the skin friction plot shows that some points seem to be off the curve. This is likely due to
the discontinuous nature of the DG approach.

Also in Fig. [9] we illustrate, for the transitional flow case, the streamwise velocity component, U , in three different
chord-wise positions. First, the velocity profile in the laminar region is representative of laminar flow. As long as
turbulence starts being generated in the boundary layer, the enlarged momentum transfer causes the boundary layer
velocity profile to become flatter, as we show in Fig. [9]. The relevance of these analyses is that we assure that the
interaction between the transition prediction framework and the CFD capability is such that the physical aspects of
laminar, transitional, and turbulent flows are retained during the simulation process.

Results for lift, drag, and moment coefficient (around c/4) are indicated in Table [5] for both flight conditions,
namely with Reynolds numbers of 5 and 15 million. We highlight that, by including transition effects, the drag is

Table 5: NACA 0012 aerodynamic coefficients.

Case cl cd cm

Re = 5× 106, Turbulent -0.000922 0.00864 0.000189
Re = 5× 106, Transitional -0.000438 0.00602 0.000129
Re = 15× 106, Turbulent -0.000851 0.00749 0.000154
Re = 15× 106, Transitional 0.000847 0.00603 0.000165

reduced by 30% for the 5 million Reynolds case and by 20% in the 15 million Reynolds case. As for the lift coefficient,
the larger variation is observed for the lower Reynolds number case. Since the NACA 0012 airfoil is symmetric and
we use a zero angle of attack condition, both lift and moment coefficients are small numbers and, thus, it is harder to
draw deeper conclusions for the effect of transition over these variables.
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(a) cf (b) U, transitional flow

Figure 9: NACA 0012 skin friction coefficient for both turbulent and transitional simulations (left) and streamwise
velocity in the laminar, transitional, and turbulent regions for the transitional simulation (right) for Re=5 million.

V.B. NLF(1)-0416

Since a considerable amount of experimental data is available for the NLF(1)-0416 airfoil, we use flight conditions
1 (Re=4 million, M=0.1, and zero angle of attack) and 2 (Re=2 million, M=0.1, and 4◦ angle of attack) from Sec. [IV]
to assess both the fully-turbulent and transitional flows for this specific geometry. The starting and final computational
meshes are depicted in Fig. [10].

(a) Initial mesh. DOF = 3516 (b) Adapted mesh. DOF = 41484

Figure 10: Examples of initial and adapted meshes for a NLF(1)-0416 run.

Figure [11] shows contours of ν̃ for condition 1 for both fully turbulent and including transition to turbulence
simulations. Here, for a non-symmetric, thicker than the NACA 0012 airfoil, it is even easier to observe the effects of
the intermittency function over the SA model turbulent variables.

The pressure coefficient distributions for the turbulent simulation, the transitional simulation, and the experimental
data can be seen in Fig. [12]. We observe that both fully-turbulent and transitional flow simulations present a good
agreement with cp from experimental data. For the airfoil pressure side, the fully-turbulent simulation leads to better
agreement with experimental data, the transitional flow run leading to better agreement in the suction side. Once again,
inspection of the upper surface transition region, predicted to take place between (x/c) = 0.375 and (x/c) = 0.446,
introduces features that are representative of the experimental pressure coefficient distribution, namely a slight, abrupt
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(a) Fully turbulent

(b) Transition included

Figure 11: SA model working variable ν̃ contours for the NLF(1)-0416 case at Re=4 million for a fully turbulent
simulation (top) and including transitional effects (bottom). The contour range is from 0 to 0.03.

(a) cp, overview (b) cp, zoom-in around the suction side transition region

Figure 12: Pressure coefficient distributions. General view (left) and zoomed-in image around the suction side transi-
tion region (right) for flight condition 1, NLF(1)-0416.

increase in the cp values around the transition region.
Figure [13] shows the skin friction coefficient, cf , for both turbulent and transitional simulations. Besides the

larger cf values for the turbulent case, as expected, it is interesting to observe that, even in the turbulent region, the
cf computations vary between turbulent and transitional analyses. This is a result from the convective nature of the
boundary layer that introduces history effects in this type of flow. As a result, the turbulent boundary layer that, in the
early chord positions, was laminar, has a development that is distinct from the one observed in the fully-turbulent case.

Also depicted in Fig. [13] are the streamwise velocity plots for the upper surface, in condition 1, for both laminar,
transitional, and turbulent regions. As for the NACA 0012 case, we can observe that our implementation effectively
computes boundary layer velocity profiles that are in agreement with the expectation of an increased momentum
transfer leading to flatter velocity profiles in the turbulent flow regime.

Table [6] introduces the aerodynamic coefficient results for transitional and turbulent simulations and compares
them to the experimental data. We observe that, by including transition to turbulence effects, the percent error in
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(a) cf (b) U, transitional flow. Suction side

Figure 13: NLF(1)-0416 skin friction coefficient for both turbulent and transitional simulations (left) and streamwise
velocity in the laminar, transitional, and turbulent regions for the transitional simulation (right) for the suction side at
Re=4 million, M=0.1, and zero angle of attack (condition 1).

Table 6: NLF(1)-0416 aerodynamic coefficients for condition 1.

Case cl cl % error cd cd % error L/D L/D % error cm cm % error
Turbulent 0.450 0.75 0.0099 68.65 45.26 40.26 -0.0995 4.36
Transitional 0.486 8.86 0.0055 6.18 87.91 16.03 -0.108 3.75
Experiment 0.447 - 0.0059 - 75.76 - -0.104 -

the drag coefficient prediction drops by one order of magnitude when compared to the fully-turbulent test case. The
lift coefficient is overpredicted by the transitional simulations. This trend was also observed by Coder.49 For the
L/D ratio, the transitional simulations are able to better reproduce the experimental value, even though the error is
still considerable due to the lift coefficient being overpredicted when transitional effects are included. The moment
coefficient around (c/4) presents very similar errors for both turbulent and transitional analyses.

Figure [14] shows ν̃ contours for condition 2 (Re=2 million, M=0.1, and 4◦ angle of attack) for both fully turbulent
and including transition to turbulence simulations. The intermittency function effect over the turbulence variables can
once again be observed. At a higher angle of attack, condition 2 is the best condition, among the ones addressed in
this paper, to visualize the ν̃ topology in both transitional and turbulent cases.

The pressure coefficient distributions for both turbulent simulation, transitional simulation, and experimental data
can be seen in Fig. [15]. For flight condition 2, the differences in the cp curves as obtained by turbulent and transitional
simulations are more observable than for flight condition 1, especially close to the suction peak. In the pressure side
with transition, we highlight that, close to (x/c) = 0.6, a separation region is partially detected by the simulation. This
is represented by the almost vertical pressure coefficient portion in the aforementioned chord position. This separation
is not captured by the fully turbulent simulation. This has the physical interpretation that a turbulent boundary layer is
more resistant to separation than a laminar one.

Figure [16] shows the skin friction coefficient, cf , for both turbulent and transitional simulations. In agreement
with Fig. [15], the cf value close to zero around (x/c) = 0.6 correlates well with the laminar separation bubble that
triggers transition in the experimental framework. Once again, the velocity profiles depicted in [16] allow for a clear
distinction between laminar, transitional, and turbulent flow regions in the suction side of the airfoil.

Table [7] introduces the aerodynamic coefficient results for transitional and turbulent simulations and compares
them to the experimental data. For flight condition 2, the inclusion of transition to turbulence effects improves the drag
coefficient prediction, as well as the L/D calculation, leading to results that are very close to experimental data. The

16 of 20

American Institute of Aeronautics and Astronautics



(a) Fully turbulent

(b) Transition included

Figure 14: SA model working variable ν̃ contours for the NLF(1)-0416 case at Re=2 million for a fully turbulent
simulation (top) and including transitional effects (bottom). The contour range is from 0 to 0.03.

(a) cp, overview (b) cp, zoom-in around the suction side transition region

Figure 15: Pressure coefficient distributions. General view (left) and zoomed-in image around the suction side transi-
tion region (right) for flight condition 2, NLF(1)-0416.

Table 7: NLF(1)-0416 aerodynamic coefficients for condition 2.

Case cl cl % error cd cd % error L/D L/D % error cm cm % error
Turbulent 0.889 1.07 0.0126 61.09 70.79 37.26 -0.0999 0.11
Transitional 0.937 6.53 0.0077 1.56 122.09 8.21 -0.109 9.19
Experiment 0.880 - 0.0078 - 112.82 - -0.100 -

lift coefficient, however, is once more overpredicted by the inclusion of transition to turbulence effects.
It is worth mentioning that the NLF(1)-0416 experimental results might suffer from wall effects in the wind tunnel

facility and our numerical results do not account for this. Also, there is no experimental information regarding the
transition front in different spanwise locations. Checking this point is relevant in order to assure that the experimental
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(a) cf (b) U, transitional flow. Suction side

Figure 16: NLF(1)-0416 skin friction coefficient for both turbulent and transitional simulations (left) and streamwise
velocity in the laminar, transitional, and turbulent regions for the transitional simulation (right) for the suction side at
Re=2 million, M=0.1, and 4◦ angle of attack (condition 2).

results are not suffering three-dimensional effects.

VI. Concluding Remarks

In this paper, we successfully demonstrate that the inclusion of transition to turbulence effects in a RANS frame-
work improves the agreement with experimental data. Our approach is unique in that it introduces laminar and tran-
sitional flow areas in a CFD code that uses a Discontinuous-Galerkin discretization. The fact that both nonlocal and
nonparallel effects are included in the transition module allows for accurate prediction of transition in boundary layer
flows. The framework is targeted at solving high Reynolds number, transitional aerodynamic flows.

The main advantage of the PSE method with respect to local stability analysis tools is that it provides the possibility
of accounting for the boundary layer growth. In the classical PSE method, variations in the baseflow strongly occur
in the wall-normal direction and weakly in the streamwise direction. We introduce the PSE formulation and highlight
the hypotheses that are considered behind the methodology. Our PSE implementation is then verified using a code-to-
code verification process. This stage is used to verify both the flow stability calculation and the transition prediction
capability. The kinetic energy-based growth rates are compared to those obtained with a benchmark implementation.
This is accomplished for both subsonic and supersonic flows over flat plates, considering oblique and aligned TS
waves. Two airfoil test cases are also considered. Transition results for a NACA 0012 test case at different Reynolds
numbers, as well as for the NLF(1)-0416 airfoil, indicate that our PSE framework is able to correctly handle transition
triggered by amplification of TS waves. Experimental results are also used for validation purposes.

By means of a continuous, smooth intermittency function, we are able to turn off production and destruction
turbulence terms in the SA turbulence model. By doing so, transition to turbulence effects are accounted for in a
RANS framework. We demonstrate that, by including transition to turbulence in our RANS, high order framework,
the drag coefficient becomes more accurate than the one obtained by using its fully-turbulent counterpart. The lift
coefficient tends to be overpredicted by the inclusion of transition effects, but the efficiency ratio (L/D) becomes better
correlated to experimental data.

The interest of including laminar-turbulent transition effects in daily CFD simulations lies not only in the quest
for lower drag airframes. In general, even small portions of laminar region that might be present in several flight
conditions, may affect the ability to correctly predict several aerodynamic characteristics. This has effects on design
areas such as aerodynamics, performance, and flight mechanics. In that sense, using an adaptive, high-order RANS
framework along with a PSE-based transition capability paves the way for higher-fidelity design and optimization.
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