You are here

Aerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis

TitleAerostructural design optimization of a 100-passenger regional jet with surrogate-based mission analysis
Publication TypeConference Papers
Year of Publication2013
AuthorsLiem, RP, Mader, CA, Lee, E, Martins, JRRA
Conference Name13th AIAA Aviation Technology, Integration, and Operations Conference
Date Published08/2013
Conference LocationLos Angeles, CA
Abstract
In this paper we present a coupled aerostructural optimization procedure for the design of a fuel efficient regional aircraft configuration. A detailed mission analysis is performed on an optimized flight mission profile to accurately compute the mission range, fuel burn, and flight time. The mission analysis procedure is designed to allow flexible mission profiles including those with a variety of cruise, climb and descent segments in the profile. The direct operating cost (DOC) is computed based on the mission characteristics (fuel weight, range, and time), and is then used as the objective function in the optimization problem. We use a coupled aerostructural solver comprised of a high-fidelity structural solver and medium-fidelity aerodynamic solver to solve for the static aeroelastic shape of
the lifting surfaces. Due to the large computational cost associated with these solvers, “kriging with a trend” surrogate models are employed to approximate the aerodynamic force and moment coefficients required in the mission analysis. This approach is demonstrated in two DOC minimization cases: a mission profile optimization with a fixed geometry, and an aerostructural optimization with fixed, previously optimized mission profiles for a 100-passenger regional jet aircraft.
Citation Key1154