In structural optimization subject to failure constraints, computing the gradients of a large number of functions with respect to a large number of design variables may not be computationally practical. Often, the number of constraints in these optimization problems is reduced using constraint aggregation at the expense of a higher mass of the optimal structural design. This work presents results of structural and coupled aerodynamic and structural design optimization of aircraft wings using a novel matrix-free augmented Lagrangian optimizer. By using a matrix-free optimizer, the computation of the full constraint Jacobian at each iteration is replaced by the computation of a small number of Jacobian-vector products. The low cost of the Jacobian-vector products allows optimization problems with thousands of failure constraints to be solved directly, mitigating the effects of constraint aggregation. The results indicate that the matrix-free optimizer reduces the computational work of solving the optimization problem by an order of magnitude compared to a traditional sequential quadratic programming optimizer. Furthermore, the use of a matrix-free optimizer makes the solution of large multidisciplinary design problems, in which gradient information must be obtained through iterative methods, computationally tractable.

\

}, doi = {10.1007/s00158-015-1349-2}, author = {Andrew B. Lambe and Joaquim R. R. A. Martins} }